5,6-Dimethylxanthenone-4-acetic acid in the treatment of refractory tumors: a phase I safety study of a vascular disrupting agent.
نویسندگان
چکیده
This phase I safety study aimed to identify the optimal dose of the vascular disrupting agent 5,6-dimethylxanthenone-4-acetic acid (DMXAA) for combination studies. Using a crossover design, 15 patients with refractory tumors were allocated randomly to receive six sequential doses of DMXAA (300, 600, 1,200, 1,800, 2,400, and 3,000 mg m(-2)), each given once-weekly as a 20-minute i.v. infusion. The drug was generally well tolerated. Transient, moderate increases in the heart rate-corrected cardiac QT interval occurred at the two highest doses. DMXAA produced transient dose-dependent increases in blood pressure. Transient, dose-related visual disturbances occurred at the two highest doses. No significant changes in K(trans) and k(ep) were observed but V(e), a secondary dynamic contrast-enhanced magnetic resonance imaging variable, increased significantly after giving DMXAA. At 1,200 mg m(-2), the Cmax and the area under the concentration-time curve over 24 hours for total and free DMXAA plasma concentrations were 315 +/- 25.8 microg/mL, 29 +/- 6.4 microg/mL x d, 8.0 +/- 1.77 microg/mL, and 0.43 +/- 0.07 microg/mL x d, respectively. Plasma levels of the vascular damage biomarker 5-hydroxyindoleacetic acid increased in the 4 hours after treatment in a dose-dependent fashion up to 1,200 mg m(-2), with a plateau thereafter. Doses in the range of 1,200 mg m(-2) have been selected for further studies (phase II combination studies with taxanes and platins are under way) because this dose produced no significant effect on heart rate-corrected cardiac QT interval, produced near maximum levels of 5-hydroxyindoleacetic acid, achieved DMXAA plasma concentrations within the preclinical therapeutic range, and was well tolerated.
منابع مشابه
Mouse, but not human STING, binds and signals in response to the vascular disrupting agent 5,6-dimethylxanthenone-4-acetic acid.
Vascular disrupting agents such as 5,6-dimethylxanthenone-4-acetic acid (DMXAA) represent a novel approach for cancer treatment. DMXAA has potent antitumor activity in mice and, despite significant preclinical promise, failed human clinical trials. The antitumor activity of DMXAA has been linked to its ability to induce type I IFNs in macrophages, although the molecular mechanisms involved are ...
متن کاملActivation of tumor-associated macrophages by the vascular disrupting agent 5,6-dimethylxanthenone-4-acetic acid induces an effective CD8+ T-cell-mediated antitumor immune response in murine models of lung cancer and mesothelioma.
5,6-Dimethylxanthenone-4-acetic acid (DMXAA) is a small molecule in the flavanoid class that has antitumor activity thought to be due to ability to induce high local levels of tumor necrosis factor (TNF)-alpha that disrupt established blood vessels within tumors. The drug has completed phase 1 testing in humans and is currently in phase 2 trials in combination with chemotherapy. Although charac...
متن کاملp38 mitogen-activated protein kinase is required for the antitumor activity of the vascular disrupting agent 5,6-dimethylxanthenone-4-acetic acid.
5,6-Dimethylxanthenone-4-acetic acid (DMXAA), a potent vascular disrupting agent, selectively destroys established tumor vasculature, causing a rapid collapse in blood flow that ultimately leads to inhibition of tumor growth. Here, we demonstrate that p38 MAPK is critically involved in DMXAA-induced cytoskeleton reorganization in endothelial cells and tumor necrosis factor-α (TNF-α) production ...
متن کاملVessel size index MRI to monitor the effects of vascular disruption by ASA404 (vadimezan, 5,6-dimethylxanthenone-4-acetic acid) in orthotopic gliomas
Introduction: Gliomas are the most common primary brain tumour type in adults but survival times remain low, irrespective of current treatments. Vascular disrupting agents (VDAs) significantly reduce tumour blood flow; and as gliomas are highly vascularised tumours, VDAs are attractive for developing new treatment strategies. Non-invasive methods of monitoring vascular targeted treatment effect...
متن کاملAminolevulinic acid-photodynamic therapy combined with topically applied vascular disrupting agent vadimezan leads to enhanced antitumor responses.
The tumor vascular-disrupting agent (VDA) vadimezan (5,6-dimethylxanthenone-4-acetic acid, DMXAA) has been shown to potentiate the antitumor activity of photodynamic therapy (PDT) using systemically administered photosensitizers. Here, we characterized the response of subcutaneous syngeneic Colon26 murine colon adenocarcinoma tumors to PDT using the locally applied photosensitizer precursor ami...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical cancer research : an official journal of the American Association for Cancer Research
دوره 12 6 شماره
صفحات -
تاریخ انتشار 2006